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Abstract. This work deals with the inverse problem associated to 3D crack identification inside 
a conductive material using eddy current measurements. In order to accelerate the time-
consuming direct optimization, the reconstruction is provided by the minimization of a last-
square functional of the data-model misfit using space mapping (SM) methodology. This 
technique enables to shift the optimization burden from a time consuming and accurate model 
to the less precise but faster coarse surrogate model. In this work, the finite element method 
(FEM) is used as a fine model while the model based on the volume integral method (VIM) 
serves as a coarse model. The application of the proposed method to the shape reconstruction 
allows to shorten the evaluation time that is required to provide the proper parameter estimation 
of surface defects.     

1 Introduction 

 The Eddy Current Testing (ECT) type non destructive testing (NDT) is mainly of interest 
for testing the quality of metallic structures. According to Faraday’s law, the capability of a 
low frequency field produced by a source probe to penetrate the conducting object makes 
possible to provide the structure recognition during production lines or in-service inspection 
of industrial parts, etc. More precisely, the application of this approach enables to find metal-
loss regions produced by corrosion, stress or fatigue, and so on. The perturbation of eddy 
currents that results from the interaction of an electromagnetic field with one or more defects 
within conductors, can be observed as a variation in the measurement signal. From this point 
of view, finding the shape of an examined object or the image of conductivity inside 
materials based on this signal is just a type of an inverse problem of structure recognition. 
The voltage or impedance obtained for the multi-frequency of exciting current as well as a 
different position of the sensor is mostly used as collected data. Hence, this work is addressed 
to the problem of a 3D bounded void defects reconstruction in a conductive structure arising 
in ECT-type of NDT. This type of problem appears in many industry branches, therefore, its 
solution finds a wide application in e.g. atomic energy, automotive, marine manufacturing 
and aeronautic industry.   
 For the reconstruction of defects in a conductive object, it is necessary to solve the eddy 
current inverse problem that is inherently ill-posed and non-linear [1]-[2]. For the purpose 
of finding its solution a lot of methods have already been developed. Among these 
techniques one can find the deterministic and stochastic algorithms, pre-calculated data 
approach, methods based on the evolution strategy or statistics, linear or quadratic models, 
artificial neural network or fuzzy-logic, e.g. [3]-[9].  
 However, engineering optimization requires highly accurate numerical models, which 
imply an excessive computational cost, e.g. 3D simulations for complicated geometries. 
From this point of view, the need exists to speed up the minimization procedure of defects 



reconstruction arising in the ECT. In this context, the two-level iterative algorithms for 
solving the eddy current inverse problem are here developed. 
 Therefore, in the present work, we tackle the inverse problem by combining the 
Aggressive Space Mapping and Manifold Mapping optimization with Tikhonov 
regularization technique under the assumption that defects can be approximated by a 
piecewise conductivity distribution. For the purpose of a coarse model optimization, the 
regularized Gauss-Newton iterative method is used. In general, these techniques assume 
the existence of two models: an expensive, so-called fine model and a coarse model, which 
is used for generating surrogates that need to approximate the fine model. In this way, the 
direct optimization of the fine model is replaced by an iterative optimization and an update 
of the cheaper to calculate but less accurate surrogate models based on the coarse model.  
 This very efficient, acknowledged engineering technique was not up to now applied for 
the purpose of defects recognition from the ECT signal. However, recently, this method has 
become the subject of very intense research in finding a solution of optimization and 
inverse problems in electromagnetism e.g. [10]-[12]. From this point of view, its 
application in the proposed area is promising. The similar inversion methodology was 
applied to defects characterization based on Magnetic Flux Leakage measurements [13].  
 For the numerical verification, the model of ECT system, a variant of which was analyzed 
in [14], is applied. Moreover, in the presented numerical example it is assumed that the 
distribution of conductivity in the region of interest, located in a conductive material, can 
be described using a known function. Note that although the usage of the here proposed 
SM-based inversion procedure allows considerably shortening the time needed for defect 
reconstruction arising in ECT - type NDT, it is still not the real-time application of defect 
recognition, which is generally a well-known drawback of the optimization algorithms 
based on the gradient methods.  

2 Eddy Current type Testing -type NDT 

 The eddy current inspection techniques are non-destructive and contact-less quantitative 
methods. Among others, its application allows to reconstruct the cracks and flaws in a 
conductive material placed on the surfaces as well as inside the material. The main concept of 
the ECT method relies on the introduction of low frequency time-harmonic electromagnetic 
field in the conductive media, and on the processing of the measured signal in order to 
conclude about the structure of the object under study. Since this signal contains the needed 
information on the discontinuity, the impedance or voltage of the probe-coil can be applied to 
reconstruct the size of a flaw and its position.  

 
Figure 1. View of the probe-coil and the conductive plate with the region of interest 



 The configuration of the simplified ECT system is shown in Fig. 1. In general, the 
evaluation of the material condition can be made based on measured signals generated by 
an eddy current probe. In the quantitative approach evaluated also in this work, the 
parameters of a crack, e.g. width, length and depth, can be assessed using the analysis of 
the field distribution in the area of interest. 
 Engineering optimization demands mostly the use of time-consuming forward numerical 
models. For example in the ECT technique, three major groups of numerical methods are 
commonly used for the forward simulations. The first group involves the numerical analysis 
such as the finite element method (FEM) e.g. [15], the finite difference method (FDM), and 
the volume integral method (VIM) [16]. Although they enable to build very accurate models, 
their main drawback is their expensive computational cost. To overcome this problem, one 
can apply integral methods like the boundary element method (BEM) for the simulation of 
eddy current inspections of defects having a negligible or narrow opening [17]. Especially, 
the so-called Bowler model is particularly interesting from the Space Mapping (SM) 
optimization viewpoint e.g. [18], as it enables to find the numerical approximations of narrow 
and arbitrary narrow-shaped cracks in a numerically efficient way. The analytical models 
comprise a second important group. Unfortunately, they are generally based on symmetry 
assumptions in the considered models and therefore they can be applied only in 2D cases e.g. 
[19]. Thus, these methods cannot be used for the solution of the 3D eddy current inverse 
problem that is considered here. The last group of techniques are based on artificial neural 
networks or fuzzy logic techniques [8] [9], and are therefore very fast. Nevertheless, their 
application is rather limited to the area in parameter space, for which the model has been 
trained. 
 The availability of the forward models, based on the FEM simulation as well as integral 
methods for inspections of narrow cracks, allows us to apply the space mapping optimization 
to defect recognition arising in the ECT type NDT. Therefore, in this work, FEM simulations 
are used as a fine model, while the reduced VIM approach for 3D flaws has been used as a 
coarse model after introducing some simplifications. This speeds up the calculation and still 
results in appropriate numerical approximations of the electromagnetic field [3]. 

2.1 Model of the considered test problem 

In the present work we investigate a simplified model of a nondestructive testing system, 
which is a variant of the simplified model of the ECT system analyzed in the JSAEM 
benchmark problem 2 [14]. This model, shown on Fig.1, consists of a pancake coil, located 
above a flat plate with a surface crack. For the inverse problem, we focus on a limited area 
of the conductive plate, the so-called region of interest. Its size, as well as the size of the 
defects under consideration, is based on the study examples analyzed in [3] and [28]. Thus, 
in our work we consider the model of arrangement that consists of air domains D1 and D3 
(� 0 = 8.854́ 10-12 F m-1, � 0 = 4� ´ 10-7 H m-1) and the region D2 (� 0, � 0, s0 = 0.98́ 106 S m-1), 
that is a plate consisting of the conductive metal INCONEL 600. In the restricted area of the 
last region, it is assumed that the 3D slot with a conductivity s (r ) (r  = (x,y,z)), bounded by a 
domain � , is placed in the conductive plate. In the presented numerical tests, the following 
types of defects are considered: ellipsoidal, cylindrical and cubical cracks, that are 
reconstructed using the Space Mapping based inversion procedure. The source of the field, 
located in the region D1, is a 140 turn axis-symmetric shape type of the coil with internal 
and external diameters of 1.2 and 3.2 mm respectively, and has a thickness of 0.8 mm. 
Additionally, in the considered model, this probe-coil is asymmetrically placed xc0 = 1mm, 
yc0 = 0 mm in order to guarantee a suitable covering of the interest region. The exciting coil 



is driven by a sinusoidal varying current with frequency f = 100 kHz (skin depth �  = 1.5 
mm). In the ECT non-destructive method, the solution of the forward problem allows to 
determine the probe impedance variation. In the test under consideration, the probe 
impedance is calculated at N = NX×NY = 7×7 = 49 coil positions, with a lift-off parameter of 
0.5 mm. The scanning points during the simulation are as follows: x has been changed from 
- 0.3 to 0.3 mm with step 0.1 mm, while y ranged from - 0.75 to 0.75 mm with step 0.25 
mm. The simulation of one measurement scan using a FE analysis for 49 positions of a 
probe-coil requires about 3.26 h on our system1.  

For the purpose of defect reconstruction, a combination of a fine model (FEM 
simulations) with a coarse model (a simplified VIM approach) is applied by means of the 
SM methodology. In this way the advantages of the two approaches can be combined in the 
proposed inversion algorithm. 

2.2 FE analysis as a fine forward model 

    In the proposed approach, a finite element (FE) model is constructed in order to obtain 
the accurate solution of the ECT problem. The 3D model shown on Fig. 1 is based on the 
A-V formulation, where A means the magnetic vector potential, while V stands for the 
electric scalar potential. Thus, the 3D field distribution for a time-varying harmonic case 
after neglecting a displacement current and using the Coulomb gauge is governed by the 
following equations [20] 
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where considered regions D1,3 and D2 stand for the surrounding free space and the eddy 
current domain, while � , �  �  mean the permeability and conductivity of the media and the 
angular frequency of density current excitation Js, respectively. The model of the ECT set 
up after providing the spatial discretization with tetrahedral finite elements is presented on 
Fig. 2. 

 
Figure 2. 3D finite element mesh of ECT system    

                                                 
1 The simulations are conducted on a 64 bit platform that consists of 2 dual core Intel Xuon of 2.0 GHz with 
32 Gb RAM memory.                   



 After expanding the A, V potentials in terms of shape function according to the Galerkin 
technique and imposing a proper boundary condition, the solution of the forward problem 
defined by equations (1)-(3) takes the form of a system of algebraic equations. This equation 
system may be solved by using either a direct or an iterative method. In our case, the GMRES 
solver was applied for this purpose.  

2.3 Integral formulation for an eddy current specialization 

    In contrast to the above-mentioned FE analysis, an integral formulation is applied where 
only the so-called support domain of the plate is divided into a regular grid of cubes. 
Moreover, we assign to each volumetric element of the conductive material an uniform value 
of the electrical conductivity. Therefore, in such approach the overall conductivity profile of 
the support domain consists of a piecewise constant distribution of real values with some 
discontinuities that correspond with the cracks.  

    Let us now consider a three-layer stratified medium that is located in the 3D Cartesian 
coordinate system, shown on Fig.3. Taking into account that only the linear, isotropic and 
non-magnetic media are investigated, the configuration of the analyzed model consists of 
the air regions D1 and D3 (� 0 and � 0), and D2 being a conductive plate made of Inconel 600 
(� 0, � 0, s0), in which the 3D bounded slot with conductivity s (r ) is placed. As a 
consequence, the different media are characterized by their propagation constants ki,  
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where i is changing in the range of 1 to 3 dependent on the described regions. 
Furthermore, we assume that the volumetric defect with the finite support domain Vf 
specified by width xs, length ys, and deepness zs can be described at any point r  by means of 
the so-called contrast function  
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Thus, the distribution of eddy currents, induced in the plate due to the excitation coil in the 
presence of defect in the model, can be expressed by a Fredholm second-kind vector 
integral equation. The application of the Green’s theorem and taking into account the 

 
Figure 3. Model applied in the integral formulation a) View of probe-coil with a gridded non-conductive surface slot  

b) the type of considered defects shapes: ellipsoidal, cylindrical and cubical, respectively 



boundary conditions at material discontinuities as well as the radiation condition at infinity, 
allows to define the associated electric field distribution as the integral equation e.g. [21] 
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Here, E(i)(r ) means the incident field caused by the primary source, when the defect is 
absent in the model, while E(r ) is the total electric field. The last term, G(r |r0) is the dyadic 
electric-electric Green’s function (both source and field observation in D2), which satisfies 
the dyadic Helmholtz equation [22] 
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with I the unit dyad, �  the Dirac impulse that here represents a unit point current source 
with orientation along the three coordinate axes. Moreover, for the eddy current problem, 
the following reciprocity relationship 0 0( | ) ( | )T=G r r G r r is satisfied, where T means 

transposition operator [20]. After multiplying equation (6) by s0 � (r) and defining 
( ) ( )( ) ( ) ( )i ic=P r r J r                                                          (8) 

as the incident eddy current sources associated to the primary field, which is set to null 
except for Vf. Finally the eddy current phenomenon inside the volumetric defect is described 
by 
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The incident eddy current density in the center of the volumetric element of a breaking slot 
can then be computed using Dodd and Deeds approach [19] or the numerically very 
effective Truncated Region Eigenfunction Expansion (TREE) method introduced by 
Theodoulidis [23]. Since the P(r ) is known, the variation of the impedance after using the 
reciprocity theorem relating the scattered field at the coil E(s)(r ) and incident field at the 
flaw E(i)(r ), is given by [19]: 
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where I means the magnitude of the excitation current. The integration is conducted over 
the volume of the flaw and P(r ) may be interpreted as the effective current dipole density at 
the slot resulting from the change in conductivity between the host and the flaw. Equation 
(9) with the unique constraint Pn(r ) = 0 on the crack surface, after discretization of the 
defect volume with a regular cubical grid of N elements and the application of the point 
matching procedure, is then transformed to linear systems of equations 
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Here, J0 means a vector of incident eddy current density, G is a square matrix with the 
Green’s functions elements, and P stands for a vector with the unknown dipole density for 
each element of the discretized defect. Certainly, the solution of the vector integral equation 
(9) has this advantage that it accounts for all the wave phenomena in the defect area. 
However, on the other hand, such approach demands a high computational load. Therefore, 
we decided to derive the coarse model not from the full vector equation (10). For this 
purpose, the reduced VIM approach for a scalar, yet 3D equation, is used.  



2.4 Coarse model as the reduced to the only one component VIM model 

    This approach is analogous to the investigation presented by the authors in [24], [25].  
According to their research, accounting for only one component of electric fields, in our case 
the xx component of the dyadic Green function, as well as only the x component of eddy 
current density, leads to a good numerical approximation of an electric field. This kind of 
simplification implies the reduction of the vector integral equation (9) to a scalar 3D version. 
For the analysis of the ECT model in the Cartesian coordinate system, we propose to apply an 
analogues approach. Thus, when the unique constraint of vanishing normal component of the 
eddy current density on the crack surface, in our case Jx(r), is defined as follows [21], [22] 
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the linear system of equations (11) can be written as    
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with inverse matrix T = G-1. Since the Green dyad is diagonally dominant, the matrix of 
system equations G and the inverse matrix T should be diagonally dominant, too. Therefore, 
the other dominant terms like Tyy and Tzz can be neglected due to J0y  = J0z  = 0, which 
implies that Px �  Py and Pz since Txx is also dominant over Txy and Txz. The justification for 
such approach is e.g. the inspection of steam generator tubes, where usually the cracks are 
very thin and long. This is the reason why the orientation of the defect can be first discovered 
based on measurement data.  Thus, finally the equation (9) can be further reduced to its only x 
component version which can be analyzed in a 3D model 
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 In short, after the discretization of the defect volume and the application of the point 
matching procedure, the eddy current phenomenon in the coarse model is described by 
equation (13). In this way a coarse model has been created on the basis of the fully integral 
formulation defined by equation (9), where some time-consuming sub-procedures related 
to the electric field computation were not included. To reach the convergence in the field 
computation, the same criterion for a coarse model as in [24] is applied. Thus, the size of 
the voxels is set to approximately (� /7)3, where �  is the standard skin depth. Finally, for the 
purpose of the inversion procedure for 3D flaws that demands at least 2D measurements or 
synthetic data, the impedance variation of the probe-coil for different xc and yc positions 
and given the value of a lift-off parameter is calculated using equation (10).  

2.5 Inversion procedure in a coarse model 

The main advantage of such defined coarse model, especially when used for the solution 
of the eddy current inverse problem, is the ability to identify any number of defects, which 
can be described by means of the same grid, on the basis of the pre-computed data. Thus, 
the inverse problem can be defined as follows. When assuming that the crack can be 
specified by the following set of parameters 

1 2{ , , ..., },pp p p=p                                                             (14) 

and the cost function is given by  
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then the process of defect identification can be conducted by the minimization of such 
defined last-square functional of the data-model. Here, � Z(p)j denotes the j-th component 
of the impedance change that is simulated in the coarse model and � Z0

j denotes the target 
impedance variation measured for the j-th probe-coil position.  
    The application of the Gauss-Newton (G-N) algorithm with Tikhonov regularization for 
defects reconstruction requires first the calculation of the gradient of the cost function (15). 
However, the crucial component of the gradient is the sensitivity information. Therefore, 
the numerically efficient adjoint Tellegen method [26], [27] is used for this purpose. After 
assuming some parameterization of the flaw function � (r ) �  f(p, r ), the sensitivity formula 
is defined as  
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Here, E(r ) means the electric field when the flaw is absent, while ( )E r� refers to the adjoint 
field. Additionally, the integration is taken over the volume of the e-th flaw voxel. 
Moreover, when the impedance magnitude is considered, the sensitivity can be computed 
using   
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It is worth noting that the gradient of the cost function can be efficiently calculated on the 
basis of equation (16) and/or (17) when using pre-computed data. However, due to fact that 
the reconstruction of the defects parameters is seriously hampered by the inherently ill-
posed and non-linear nature of the eddy current inverse problem, a regularization technique 
such as the Tikhonov method with the Generalized Cross Validation GCV(� ) needs to be 
applied[28]. The result for the application of the described inversion procedure for the 
identification of the cubic-like shape surface defect is shown on Fig. 4.  

 

Figure 4:  The convergence history for the reconstruction of a cuboidal crack when using the coarse model  
based on the regularized G-N algorithm. 

 In the numerical example, the synthetic data are obtained by solving equations (13) and 
(10) corresponding to the forward coarse model for the crack dimensions as follows:  
width a = 0.6 mm, length b = 2.0 mm and depth c = 1.0 mm. The search region consists of 
ND = NX´ NY´ NZ = 8́ 10́ 5 = 400 voxels, where each cell of the support domain Vf  has a 



size of � X´ � Y´ � Z = 0.1́ 0.25́ 0.125 mm. Furthermore, the probe-coil is fed by a time-
harmonic excitation current with frequency f  = 100 kHz. Although the shape of the crack is 
reconstructed after 16 iterations and is computationally fast (on average only a few 
minutes), the obtained solution is not acceptable from the accuracy viewpoint. The level of 
the relative mean identification error when using this model is about  
15-20%. Therefore, the Space Mapping optimization needs to be applied for further 
improving the accuracy of defect identification.  

3 Two – level optimization method 

    In the former sections, on the one hand the accurate and time-consuming numerical method 
were presented to solve the considered ECT forward problem. On the other hand, the much 
faster, but less accurate scheme based on the reduced VIM approach was shown. In order to 
speed up the inversion procedure, a Space Mapping is used, which enables to combine both 
the fine and coarse models to come to a fast and accurate algorithm for defect reconstruction. 

3.1 Introduction 

 Space Mapping (SM) is a highly recognized, efficient optimization method that has found a 
broad application to solve a wide range of engineering problems arising in various industry 
fields [10]-[13], [29]-[31].The main concept behind SM is to replace the traditional direct 
optimization procedure based on the accurate analysis of a computationally slow fine model 
with an iterative optimization and updating of a coarse model, which therefore, is cheaper to 
evaluate but also less precise. In consequence, the coarse model is used for an exploration 
while the fine model is considered only for a limited number of times (i.e. exploitation). An 
example of a fine simulation might be a model of a device analyzed in an electromagnetic 
simulator or a numerical model of a non-destructive system such as ECT, MFL. According to 
the SM methodology, an analytical formula describing the behaviour of the device, a circuit 
simulation of this device or a simplified numerical scheme after reduction of time-demanding 
subroutines would serve as a coarse model. Assuming that the misalignment between both 
models can be minimized or is just not significant, the SM optimization allows for an 
essential reduction of the CPU time needed for obtaining reliable results typically after only a 
few iterations, this in contrast to direct optimization procedures [10].  
 In many practical applications in the engineering field the goal is to solve  
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Here, Rf : Xf  ®  Rm denotes the response vector of the fine model, while a functional F  (cost 
function) can be defined by e.g. a second norm 
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where 0
. .2 ., ,...,( ) 0 0 0

f f 1 f f MR R R� �

 �=R x means the target response. 

Instead of solving problem (5) using direct optimization of the time-consuming fine model, 
we consider surrogate models which are a good local approximation of the fine model. It is 
also assumed that they are computationally non-expensive and therefore suitable for an 
iterative optimization. From these reasons, we investigate an optimization algorithm that 
produces a sequence of results xf

(i) (i = 1,2,...,K ) 
( ) ( )arg min ( ( )),i i

Sf F=
x

x R x                                            (20) 



while ( )( )i
SR x denotes a family of surrogate models. However, the surrogates are created on 

the basis of a coarse model and an auxiliary mapping defined during the so-called parameter 
extraction process by means of 

( ) ( )( 1) ( ) ( ) ( )arg min , .i i i i
f Sp

+ = -p R x R x p                                    (21) 

Here, ( ) ( )( ) ( , )i i
S S=R x R x p is a generic SM surrogate model, that is a coarse model Rc with a 

typically linear transformation, where Rc : Xf  ®  Rm [10].  
 Different types of surrogate models have been presented in the literature during the last 
decade [10],[13], e.g.: 

- models that use typically a linear transformation in the parameter space e.g. 
Aggressive Space mapping (ASM), or an input SM [10], [11], 

- models applied in their constriction, the transformation in the response parameter 
space, for instance, an output SM [13] or the Manifold Mapping 
optimization[29], 

- models that exploit the parameter and response spaces in order to align the surrogate 
with a fine model, e.g. the Response and Parameter Mapping [12], 

- the Implicit Space Mapping [32] which allows the separation of the parameters and 
design variables used in the process of alignment the surrogate with a fine 
model,     

- the custom models that exploit the parameters which are characteristic for a given 
design problem [10].       

Summarizing, the flow of a SM-based algorithm can be written as [31] 

     Step 1) set i = 1 and choose the initial solution x(1)for the given fine  
      model and coarse model,  
     Step 2) calculate the fine model in order to find Rf (x

(i)),  
     Step 3) evaluate in the surrogate model Rs

(i) using (21),  
     Step 4) based on x(i) and Rs

(i) determine x(i) using (20), 
     Step 5) if the stop condition is not fulfilled, choose step 2, otherwise finish 
       the calculation. 
In this paper, two types of two-level techniques are considered for solving the eddy current 

inverse problem: the ASM method and the MM algorithm. Assuming the j-dimensional 
vector of the probe impedance in case of the coarse (fine) model for certain i-dimensional 
flaw parameters vector xc Î  Xc (xf Î Xf) is denoted by c(xc) Î  � c (f(xf) Î  � f), the 
optimization problem (18) can be reformulated and shown in an explicit form as  

    ( )* arg min ,
f f

fXf Î
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x
x f x y

              
(22) 

where y means the target impedance variation, which is obtained by either simulation or as 
a result of the conducted measurements.  

3.2 Aggressive Space Mapping 

    In the space mapping methods, a coarse model is used for generating surrogates that need 
to approximate and exploit a fine model. Therefore, the mapping between parameter spaces 
of both models is constructed, so that      

( ) ( ( ))f f»f x c p x                   (23) 

can be satisfied. Hence, in this case the suitable surrogates are found as a result of the so-



called parameter extraction process (PE) that is provided in such a way that the coarse 
model matches the fine model. 

. 

 
Figure 5. Flowchart of inversion procedure based on ASM algorithm. 

In the aggressive type of the SM method, the surrogate model in the k-th iteration is given 
by [10] 

( ) ( )( )( ) ( )
ASM ,k k

f f=x c p xs                        (24) 

while the next result xf 
(k) can be computed using  

( )( )
ASM ,arg min

cf

k
fX

k
f Î

= -
x

( )x s x y              (25) 

with a mapping function defined as 

( ) ( ) ( )( ) ( ) ( ) ( ) .k k k k
f f f f= + -p x p x B x x              (26)  

Here, xf
(k) is the k-th quasi Newton iteration with B(k) being an approximation of the p(xf) 

Jacobian that can be updated using Broyden’s rank formula. Thus, in this way the direct 
optimization of the fine model is replaced by the iterative optimization of the cheaper to 
calculate but less accurate surrogate models based on the coarse model. 
    However, the inversion procedure based on the ASM techniques might fail if there is a 
significant misalignment between both models responses and in such case the solution of 
optimization problem defined by (25) does not necessarily coincide with the fine model 
optimum [29].  



3.3 Manifold Mapping 

    In contrast to the SM approach where mapping is performed in the parameter space, the 
MM algorithm employs an affine mapping only between the responses of the coarse and 
fine models. Thus, in order to define an affine map between two vector spaces, this 
technique applies a linear transformation followed by a translation [29]. In this way it 
performs the response correction by establishing a surrogate model with an affine mapping 
in the response spaces of both considered models.  

 
Figure 6. Flowchart of inversion procedure based on MM optimization. 

The MM algorithm uses the following type of surrogate model  

( ) ( )( )( )( ) ( )
MM ,( ) ( )kk k k

f f f f+= -( ) f x D xx c x cs             (27) 

where D(k) is a regular, so-called rotation matrix, and f(xf
(k)) plays a role of a translation 

vector. Under the assumption that xc = xf, the xf
(k+1) is defined in the MM algorithm as  

MM .arg min ( )
cf

k
fX

k
f Î

= -( )

x

( )x s x y                        (28) 

It follows from (27) and (28) that, the Manifold Mapping technique can be used without a 
necessity of computing the exact gradient information.  

4 Result for the defects reconstruction 

    In order to verify the proposed inversion technique based on SM optimization, we 
consider the reconstruction of three different crack shapes, as shown in Fig. 7. In the 
presented numerical examples, the conductivity distribution in an anomalous area of a 



conductive material is described by means of a known function. The parameters of the 
artificial cracks are given in Table 1.  

Table 1 Parameters of the artificial cracks 

Crack name a / width [mm] b / length  [mm] c/ depth [mm] 

Crack 1 (ellipsoidal) 0.3 1.0 0.5 

Crack 2 (cuboidal) 0.6 2.0 0.5 

Crack 3 (cylindrical) 0.3 1.0 0.5 

 

Synthetic data is generated by solving the adequate forward problem, which is treated as the 
reference impedance for solving the inverse problem. The FE simulations are calculated 
using equations (1)-(3) and acts as fine model within the SM scheme. The ECT system 
under investigation is depicted in Fig. 8. It consists of 94255 finite elements and the number 
of degree of freedom is solved for 143075. The search domain has a size of 
D = DXś DYś DZs = 0.8́ 2.25́ 0.625 mm, and is placed in the plate made of Inconel 600 
with dimensions 22́22́ 1.25 mm. The size of probe as well as its localization versus the 
search area is shown in Fig. 8. For such configuration, the probe impedance is measured at 
N = NX´ NY =7´ 7 =49 coil positions, with a lift-off parameter of 0.5 mm. The simulation of 
one measurement scan in the FE case for 49 positions of the coil, when x is changing from - 
0.3 to 0.3 mm with step 0.1 mm and y is ranging from - 0.75 to 0.75 mm with step 0.25 
mm, requires about 3.26 h on our system.  

   

Figure 7. The shape of surface slots under consideration: a) ellipsoidal shaped defect, b) cylindrical flaw,  
c) cubical surface slot  

 

Figure 8. View of the probe-coil, the conductive plate with the region of interest 

As coarse model, the scalar 3D VIM described by equation (13) with condition (12a) is 
considered. In the coarse model, the test domain is divided into 
ND = NX´ NY´ NZ = 8́ 10́ 5 = 400 voxels, each of size � X´ � Y´ � Z = 0.1́ 0.25́ 0.125 mm.  
It is worth mentioning that the single-time analysis in this model for 49 positions of the 
probe takes about a few seconds using pre-computed data, while the coarse model 



solution during the inverse problem itself, also based on the pre-computed data, takes 
only about 5 min. These features make this approach perfectly suitable as an efficient 
coarse model. The result of the simulation in both models is presented in Fig. 9. For the 
calibration purpose, one point procedure using maximal value is used. 
 

 
Figure 9. The result for the calibration of the FEM and the reduced VIM model for the assumed reference crack  

The two above-mentioned SM techniques are first implemented and then tested in eddy 
current inverse problem.    

4.1 Defects reconstruction based on ASM algorithm 

 The result of reconstruction process based on the regularized ASM algorithm is summarized 
in Table 2. Hence, the first column shows the values of starting points for the three kinds of 
considered cracks, the second column indicates the values of the mean relative error 
calculated after providing the initial reconstruction in the coarse model, while the third and 
fourth columns represent the number of coarse and fine model evaluations, respectively. 
Finally, in the last column one can see the value of the mean relative error (i.e. accuracy of 
inversion procedure) associated to the reconstructed parameters (with values presented in the 
next to last column) of defect.  

Table 2 Inversion results for regularized ASM optimization of investigated crack 

Name of 
defect 

Initial 
point 
[mm] 

MRE 
for xc 
[%] 

No of coarse 
model 
evaluation 

No of fine 
model 
evaluations 

Reconstructed 
size of defect 

MRE for xf 
[%] 

Crack 1 
(ellipsoidal 

flaw) 

0.20

0.75

0.375

� �
� 	
� 	
� 	
 �

 12% 6 7 

0.23
1.04
0.49

� �
� 	
� 	
� 	
 �

 9.7% 

Crack 2 
(cuboidal 

flaw) 

0.100

0.375

0.187

� �
� 	
� 	
� 	
 �

 14% 5 6 

0.559
1.947
0.388

� �
� 	
� 	
� 	
 �

 7,2% 

Crack 3 
(cylindrical 

flaw) 

0.100

0.375

0.187

� �
� 	
� 	
� 	
 �

 13% 4 5 

0.319
0.986
0.408

� �
� 	
� 	
� 	
 �

 8.6% 

 



The distribution of both impedances: target and that after providing the defects 
reconstruction is presented on Fig. 10, 11 and 12 respectively.  
 

  
Figure 10. Comparison of the target impedance magnitude 
with that obtained at the ASM optimal point in case of 
ellipsoidal defect (crack 1) 

Figure 11. Comparison of the target impedance magnitude 
with that obtained at the ASM optimal point in case of 
cylindrical defect (crack 3) 

4.2 Defects reconstruction by MM based inversion procedure 

    In Table 3, the results of the reconstruction when using the MM are presented. The table 
is organized in the same way as the previous one.  

  
Figure 12. Comparison of the target impedance magnitude 
with that obtained at the ASM optimal point in  case of 
cubical defect (crack 2) 

Figure 13. Comparison of the target impedance magnitude with 
that obtained at the MM optimal point in  case of cubical defect 
(crack 2) 

 

Table 3 Inversion results for the MM optimization of investigated crack 

Name of 
defect 

Initial 
point 

[mm] 

MRE 
for xc 

[%] 

No of coarse 
model 
evaluation 

No of fine 
model 
evaluations 

Reconstructed 
size of defect 

MRE 
for xf 
[%] 

Crack 1 
(ellipsoidal 

flaw) 

0.20

0.75

0.375

� �
� 	
� 	
� 	
 �

 12% 5 6 

0.32
1.07
0.49

� �
� 	
� 	
� 	
 �

 7.61% 

Crack 2 
(cuboidal 

flaw) 

0.100

0.375

0.187

� �
� 	
� 	
� 	
 �

 14% 3 4 

0.49
1.98
0.494

� �
� 	
� 	
� 	
 �

 6,7% 

Crack 3 
(cylindrica

l flaw) 

0.100

0.375

0.187

� �
� 	
� 	
� 	
 �

 13% 4 5 

0.287
1.063
0.447

� �
� 	
� 	
� 	
 �

 7.1% 



  
Figure 14. Comparison of the target impedance magnitude 
with that obtained at the MM optimal point in  case of 
ellipsoidal defect (crack 1) 

Figure 15. Comparison of the target impedance magnitude 
with that obtained at the MM optimal point in  case of 
ellipsoidal defect (crack 3) 

The comparison between the target impedance and that calculated for the reconstructed 
shape of defects is shown in Fig. 13, 14 and 15, respectively.  

4.3 Discussion 

    Based on the results included in both tables one can conclude that the application of the 
SM or the MM methodology leads to a decrease in computational time for the estimation of 
the defects parameters using ECT data. The optimal solution is reached after only a few 
evaluation of time-consuming fine model.  
    Tables 2 and 3 show the good working of both minimization methods where for example 
in case of the elliptical defect 5 (6) evaluations need to be performed in the fine FE model 
and 5 (6) parameter extraction procedures, see equation (21) for the SM algorithm and 
equation (28) for the MM algorithm. In general, the MM technique need less evaluation of a 
fine model in order to obtain the comparable result of the defects reconstruction with 
respect to their accuracy. We save approximately 50% of CPU time when using the SM or 
MM algorithm, compared to the use of Tikhonov and GCV(l ) regularization in the fine FE 
model only. The reconstructed defects are accurate when using SM and MM. The MM is 
however able to recover the defect more accurately but the difference is small and 
negligible. The results presented in this paper show that the quality of the implemented 
coarse model relatively to the fine model is satisfactory. As shown in Fig. 9 there is not a 
large misalignment between the parameter spaces of the coarse and fine model, i.e. the shift 
in parameter space between both models is relatively small. This explains the convergence 
of the SM method. In the response space, a misalignment exists which explains the more 
accurate convergence of the MM method compared to the SM method. Indeed, it is difficult 
for the SM method to deal with misaligned models in response space. However, we need to 
stress that the difference between MM and SM is still small. Both methods are thus suitable 
for recovering defects using the models presented in this paper. In order to further improve 
the accuracy of ECT, eddy current array technology, i.e. the application of multiple eddy 
current excitation probes, can be used. 

5 Conclusion 

 We investigated in this paper the eddy current inverse problem which relied on the 
parameters estimation of the surface slot located in a conductive plate made of Inconel 600. In 
order to accelerate the process of reconstruction based on the time-consuming FEM model, 
we applied the two-level techniques ASM and MM optimization. According to this 
methodology, a suitable coarse model is needed. In our case, for the purpose of 3D defect 
reconstruction, the reduced VIM approach was applied. Furthermore, the proposed algorithm 



was tested for varying shapes of defects. In all considered cases we achieved a proper result 
for defect parameters estimation, where the synthetic data was used as an input data.  
According to our experience, the two-level inversion procedures allow to save up to 50% 
CPU time in comparison with the optimization by means of regularized Gauss-Newton 
algorithm in the same FE model. In this work only the specific kinds of surface defects were 
considered. Therefore, the reconstruction of arbitrary shapes of defects when using real 
measurement data from ECT system can be treated in further research.  
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